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The algebraic structures arising in the axiomatic framework of unsharp quantum
mechanics based on effect operators on a Hilbert space are investigated. It is
stressed that usually considered “effect” algebras neglect the unitary Brouwerian
map of complementation, and the main results based on this complementation
are collected, showing the enrichment produced into the theory by its introduction.
In particular, in these structures two notions of sharpness can be considered: K-
sharpness induced by the usual complementation of effect algebras and B-
sharpness induced by this new complementation. Quantum (resp., classical) SBZ
algebras are then characterized by the condition of B-coherence (resp., B-
coherence plus B-compatibility), showing that in this case the poset of all B-
sharp elements is orthomodular (resp., Boolean algebra). In the unsharp context
of effect operators, the finite dimensionality of the Hilbert space or the finiteness
of a von Neumann algebra are both characterized by a de Morgan property of
the Brouwer complementation. Moreover, since effect operators on a pre-Hilbert
space give rise to a standard model of effect algebras, a characterization of
completeness of pre-Hilbert spaces is given making use of the Brouwer
complement.

1. SUM BROUWER–ZADEH (BZ) EFFECT ALGEBRAS

Sum Brouwer–Zadeh (SBZ) algebras have been introduced [4] in order
to give an axiomatic algebraic framework to standard unsharp quantum
mechanics (UQM) based on effect operators on complex Hilbert spaces. It
essentially consists of a regular effect algebra:

^%, %, 8, 0, 1&

which is an effect algebra as defined in refs. 15 and 17 (equivalently formu-
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lated some years before in ref. 20 as unsharp orthoalgebra, and called weak
orthoalgebra in ref. 15) such that, denoting by a ' b the fact that a % b is
defined, the following regularity condition holds:

a ' a and b ' b imply a ' b

This regular effect algebra is furthermore equipped with another unary opera-
tion ,: % ° %, called the Brouwer complementation, satisfying the follow-
ing conditions:

(boc-1) [B-Symmetry law]. Let a, b P %. Then,

∃r: a % r 5 b, implies ∃s: b % s 5 a,

(boc-2) [B-Orthogonality law]:

∀a P %, a ' a, [i.e., ∃a % a,]

(boc-3) [B-Noncontradiction law]. Let a, c P %. Then,

∃r: a, % r 5 c and ∃s: a,, % s 5 c imply c 5 1

Strangely enough, the possibility of working with a more articulate
structure, with the corresponding enrichment of the theory, has been neglected
by the scientific community involved in axiomatic UQM. In this paper the
main results based on this complementation are collected.

In particular, two notions of sharpness can be introduced in these struc-
tures: K-sharpness induced by the Kleene complementation 8: % ° % usually
obtained from any effect algebras, and B-sharpness induced by the new
Brouwer complementation. In Section 4 quantum SBZ algebras can be defined
by the condition of B-coherence, showing that in this case, differently from
the notion of K-coherence introduced by Foulis and Bennett [17] (and assuring
that the whole effect algebra is orthomodular), only the substructure of all
B-sharp elements is an orthomodular poset, whereas in general the larger
effect algebra is not so. Of course, this is the case of the concrete algebra
of effect operators on a Hilbert space. A similar result is given for the case
of classical SBZ algebras, i.e., SBZ algebars satisfying both the B-coherence
and the B-completeness laws, whose substructure of B-sharp elements is a
Boolean algebra.

As in the sharp case, the modularity of the lattice of projectors character-
izes the finite dimensionality of the Hilbert space; in Section 5 it is recalled
that in the unsharp context of effect operators the de Morgan property of the
Brouwer complement characterizes the finite dimensionality of the Hilbert
space (and in the case of von Neumann algebras, its finiteness).

We want to stress that regular effect algebras (without the , operation)
admit as standard models the collection of all effect operators on a pre-
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Hilbert space. In Section 6, making use of a result of Gudder [21], we give
a characterization of completeness of a pre-Hilbert space in which this new
unary operation is strongly involved.

1.1. Standard Models of SBZ Algebras

In order to show that the definition of SBZ algebra is not empty, let us
consider some interesting examples.

Example 1.1. Usual fuzzy set theory on the universe U. Let U be a
nonempty set. Let %(U ) :5 [0, 1]U be the collection of all mappings f : U
° [0, 1] ( fuzzy sets or generalized characteristic functionals on the universe
U ); in particular, 1 (resp., 0) is the fuzzy set associating with any x P U the
number 1,(x) :5 1 (resp, 0). Then the structure ^[0, 1]U, ', %, 8, ,, 0, 1& is
an SBZ-algebra with respect to:

(1) The orthogonality relation: let f, g P [0, 1]U; then f ' g iff ∀x P
U, ( f 1 g)(x) # 1.

(2) The partial sum operation: let f, g P [0, 1]U be such that f ' g;
then f % g :5 f 1 g.

(3) The K-complementation: ∀f P [0, 1]U, then f 8 5 1 5 f (in particular,
0 5 18).

(4) The B-complementation: ∀f P [0, 1]U; then f , 5 xA0( f ) [where
A0( f ) :5 {x P U: f(x) 5 0} is the certainly-no domain of f, and
for every subset A of U, xA(x) is the characteristic functional of
A; in particular, 0 5 xf and 1 5 xU].

Example 1.2. Standard unsharp QM on the Hilbert space *. Let * be
a complex, separable Hilbert space. Let %(*) be the collection of all linear
operators F: * ° * such that the corresponding probability distribution
function ∀c P * \{0}, fF(c) :5 (c.Fc)/|c|2, is a fuzzy set on the universe
*8 :5 * \{0} (equivalently, iff ∀c P *, 0 # ^c.Fc& # |c|2). These operators
are called effect operators; in particular, I (resp., O) is the effect operator
associating with any c P * the vector I(c) :5 c (resp., 0). Then the structure
^%(*), ', %, 8, ,, O, I& is an SBZ-algebra with respect to:

(1) The orthogonality relation: let F, G P %(*); then F ' G iff ∀c
P *, ^c.(F 1 G)c& # |c|2.

(2) The partial sum operation: let F, G P %(*) be such that F ' G;
then F % G :5 F 1 G.

(3) The K-complementation: ∀F P %(*), F :5 I 2 F (in particular
O 5 I8).

(4) The B-complementation: ∀F P %(*), F , :5 PM0(F) [where M0(F )
:5 {c P *: ^c.Fc& 5 0} 5 Ker (F ) is the certainly-no subspace
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of F, and for every subspace M of *, PM is the orthogonal projection
on M; in particular, O 5 P{0} and I 5 P* ].

Let us notice that in the case of a pre-Hilbert space _, one can also
consider the collection of all effect operators defined formally as in the
Hilbert space case. The unique difference is that only points (1)–(3) can
be considered, obtaining a structure ^_, ', %, 8O,, I& which is only of
effect algebra.

Example 1.3. Unsharp QM on von Neumann algebras. Let } be a von
Neumann algebra of operators on a Hilbert space with self-adjoint part }s

and positive cone }+. Then on the unit interval %(}) 5 [0, 1] of this von
Neumann algebra, points (1)–(4) of Example 1.2 are well defined and the
resulting structure is of SBZ poset [10].

Let us notice that if we consider the larger category of C*-algebras,
then also in this case only points (1)–(3) are well defined, obtaining that the
structure of the unit interval is only of an effect algebra.

2. DISTINCTION BETWEEN SHARP AND UNSHARP
ELEMENTS

From any SBZ algebra ^%, ', %, 8, ,, 0, 1& it is possible to induce a
BZ poset structure bounded by the least element 0 and the greatest element
1 [14],

^%, #, 8, ,, 0, 1&

where the binary relation # on % is the usual effect algebra partial order-
ing [17]:

a # b iff ∃c: a % c 5 b (2.1)

The mapping 8: % ° % is the Kleene complementation satisfying:

(K1) a 5 a9.
(K2) a # b implies b8 # a8.
(K3) a # a8 and b8 # b imply a # b.

[In general the “noncontradiction” law (∀a P %, a ∧ a8 5 0) and the
“excluded-middle” law (∀a P %, a ∨ a8 5 1) do not hold; note that under
conditions (K1) and (K2) these two laws are mutually equivalent.]

The mapping ,: % ° % is the Brouwer complementation satisfying:

(B1) a # a,,.
(B2) a # b implies b, # a,.
(B3) a ∧ a, 5 0.
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[In general the “strong double negation” law (∀a P %, a 5 a,,) does
not hold.]

In these BZ structures one can single out two kinds of sharp elements: the
K-sharp, for which the excluded-middle law for the Kleene complementation
holds, %K 5 {h P %: h ∨ h8 5 1}, and the B-sharp, for which the strong
double negation law for the Brouwer complementation holds, %B 5 {a P
%: a 5 a,,}. Trivially, %B # %K.

Proposition 2.1. The set %K of all K-sharp elements:

1. Is closed with respect to the Kleene complementation: ∀h P %K ,
h8 P %K.

2. Equipped with the restriction of the partial order relation (2.1),
turns out to be an orthoposet (i.e., a poset with standard ortho-
complementation),

^%K , #, 8, 0, 1&

Proposition 2.2. The set %B of all B-sharp elements:

1. Is closed with respect to the % operation: let a, b P %B be such
that ∃a % b in %, then a % b P %B.

2. The two complementations collapse on its elements (∀a P %B , a8
5 a,), and is closed with respect to this (unique and standard)
orthocomplementation (∀a P %B , a8 P %B).

3. Is an orthoalgebra ^%B , %, 8, 0, 1& [18], whose induced partial order
structure ^%B , #, 8, 0, 1& is an orthoposet, contained in the orthoposet
^%K , #, 8, 0, 1& of all K-sharp elements.

Example 2.1. Let us consider the SBZ algebra of fuzzy sets on U
discussed in Example 1.1. Then, the partial order (2.1) induced from the
partial sum operation (2) is the pointwise ordering

∀f, g P %(U ), f # g iff ∀x P U, f (x) # g(x) (2.2)

With respect to this partial ordering %(U ) can be characterized as the set of
all real-valued mappings f defined on U such that 0 # f # 1.

We have the following result:

Theorem 2.1. Let U be a universe space and let [0, 1]U be the SBZ
algebra of all fuzzy sets on U. Then:

1. The induced structure ^[0, 1]U, #, 8, ,, 0, 1& is a distributive BZ
complete lattice.

2. The sets of B-sharp and K-sharp elements coincide, and in turn they
coincide with the Boolean (atomic, complete) lattice {0, 1}U of all
characteristic functionals:



536 Cattaneo

([0, 1]U)B 5 ([0, 1]U)K 5 {0, 1}U

Let us stress that the Boolean lattice {0, 1}U of all (0,1-valued) character-
istic functionals (B- and K-sharp fuzzy sets) on U is isomorphic to the Boolean
lattice 3(U ) of all subsets of U (the power set of U ) by the one-to-one
correspondence A1: {0, 1}U ° 3(U ) associating with any characteristic
functional x: U ° {0, 1} its certainly-yes domain A1(x) :5 {x P U: x(x) 5 1}.

Therefore, B- and K-sharp fuzzy sets (characteristic functionals) are
identifiable with subsets of the universe U.

Example 2.2. In the case of the SBZ algebra %(*) of effect operators
on the Hilbert space *, the partial order (2.1) assumes the form

∀F, G P %(*), F # G iff ∀c P *, ^c.Fc& # ^c.Gc& (2.3)

Note that two effect operators are in the relation F # G iff the corresponding
fuzzy sets are in the relation fF # fG. Also, in this example %(*) can be
characterized as the set of all linear operators F on * such that O # F # I.

In the present Hilbert space case we have the following result.

Theorem 2.2. Let * be a Hilbert space and let #E(*) be the SBZ
algebra of all effect operators on *. Then:

1. The induced structure ^%(*), #, 8, ,, O, I& is a BZ poset which is
not a lattice.

2. The sets of B-sharp and K-sharp elements coincide, and in turn they
coincide with the orthomodular (atomic, complete) lattice P(*) of
all orthogonal projections

%B(*) 5 %K(*) 5 P(*)

Also, in this Hilbert space case, the orthomodular lattice P(*) of all
orthogonal projections (B- and K-sharp effects) on * is isomorphic to the
orthomodular lattice }(*) of all subspaces of *, by the one-to-one correspon-
dence M1: P(*) ° }(*) associating with any orthogonal projection P:
* ° * its certainly-yes subspace M1(P) :5 {c P *:^c.Pc& 5 |c|2} 5
Ker(I 2 P).

Therefore, B- and K-sharp effect operators (orthogonal projections) are
identifiable with subspaces of the Hilbert space *.

2.1. Sharpness in the BZ Structure of Special Elements

In the context of the algebraic BZ poset structure ^%, #, 8, ,, 0, 1&, the
0-kernel and 1-kernel of the Kleene complementation are defined, respec-
tively, as the two subsets
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N 80(%) :5 {a P %: a # a8} and N 81(%) :5 {b P %: b8 # b}

Setting N̂ 80(%) :5 N 80(%) \{0} and N̂ 81(%) :5 N 81(%) \{1}, we call the elements
of %(se) :5 % \ (N̂ 80(%) ø N̂ 81(%)) special.

Theorem 2.3. Let % be BZ poset. Then the following hold:

1. The set of all special effects is not empty since it contains all B-
sharp elements: %B # %(se).

2. %(se) is closed with respect to both Kleene and Brouwer complemen-
tations (∀a P %(se): a8, a, P %(se)), and so equipped with the
restriction #se of the partial order (2.1) and the complementations
8: %(se) ° %(se) and ,: %(se) ° %(se) determines a BZ poset in which
both the excluded-middle principle (∀f P %(se), f ∨se f 8 5 1) and
the noncontradiction principle (∀f P %(se), f ∧se f 8 5 0) for the Kleene
complementation hold, i.e., 8 is a standard orthocomplementation.

Proof. Conditions a 5 a,,(a P %B) and a # a8[a P N 80(%)] imply a 5
a,, # a8, from which, applying the Kleene complementation, we obtain a 5
a9 # a,,8, that is, (a,,) # (a,,)8. Let us recall that from a 5 a,, it follows
that (a,,) 5 (a,,),,, i.e., a,, P %B , and so, using points 2 and 3 of
Proposition 2.2, we have (a,,) 5 (a,,) ∧ (a,,)8 5 0, concluding that a 5
a,, 5 0.

Analogously, conditions b P %B and b P N 81(%) imply b 5 1.
Let now f P %(se) be a special effect and let g P %(se) be a lower bound

of { f, f 8} with respect to #se, i.e., g #se f and g #se f 8. Then, g #se f #se g8,
i.e., g 5 0. Note that in general the latter conclusion cannot be inferred if
we consider the special effect f P %(se) inside the wide Kleene poset %;
indeed, if we take an element g P % such that g # f and g # f 8, then we
can only infer that g # g8, i.e., g P N 80(%). n

If, as usual, one defines as K-sharp elements of %(se) the collection
%(se)

K of all special effects for which the excluded middle and the noncontradic-
tion laws hold for the complementation 8 and as B-sharp elements the
collection %(se)

B of all special effects for which the strong double negation
law holds for the complementation,; then one obtains

%(se)
B # %(se)

K 5 %(se)

That is, in the case of the BZ poset of special elements the notion of K-
sharpness is meaningless.

Let us recall that the notion of special effects in quantum mechanics
was introduced for the first time by Garola [19] (see also ref. 2) in order to
avoid the presence of some physically unpleasant effect operators.
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Example 2.3. In the standard BZ poset structure of effect operators on
a Hilbert space *, ^%(*), #, ,, 8, 0, 1&, an effect F P %(*) is special iff
there exist nonzero vectors c, w P * \{0} such that

^c.Fc& , 1–2 |c|2 and ^w.Fw& . 1–2 |w|2 (2.4)

In this Hilbert space case of special effects one obtains the following
inclusions:

P(*) 5 %(se)
B (*) , %(se)

K (*) 5 %(se)(*)

That is, orthogonal projections are the B-sharp elements, whereas according
to the general theory, K-sharp elements coincide with the whole BZ structure.

The set %(se)(*) has the particular “pathological” behavior that in general
it is not closed with respect to the restriction of the partial sum operation
defined in %(*). For instance, let us consider the two-dimensional Hilbert
space C2. Then the two effect operators

12/3 0
0 02 and 10 0

0 2/32
are special, but their sum (2/3)I is not special.

3. THE INDUCED ROUGH APPROXIMATION SPACE

Making use of the two complementations of the BZ poset structure
induced from every SBZ algebra %, it is possible to construct (according to
refs. 3 and 5) an associated rough approximation space ^%, %B , n, m&, where:

(r1) % is the set of approximable elements.
(r2) %B is the set of definable (sharp or crisp) elements.
(r3) n: % ° %B is the inner approximation map associating with any

element a P % its inner sharp approximation an :5 a8, (the
necessity of a).

(r4) m: % ° %B is the outer approximation map associating with any
element a P % its outer approximation am :5 a,8 (the possibility
of a).

The inner approximation an is the best approximation of a from the bottom
by B-sharp elements, since:

(in1) an is B-sharp.
(in2) It is an approximation of a from the bottom: an # a.
(in3) It is the best B-sharp approximation of a from the bottom: b P

%B and b # a imply b # an.
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The outer approximation am is the best approximation of a from the top by
B-sharp elements, since:

(ou1) am is B-sharp.
(ou2) It is an approximation of a from the top: a # am.
(ou3) It is the best B-sharp approximation of a from the top: g P %B

and a # g imply am # g.

From (in2) and (ou2) we have that, for every approximable element a P %,
the two B-sharp elements an, am P %B are such that an # a # am. This gives
rise to the rough approximation r(a) 5 (an, am) P %B 3 %B of the element
a P %, according to the Pavlak’s approach to roughness [26]. Trivially, the
rough approximation of a B-sharp element a P %B is the identical pair r(a) 5
(a, a).

Let us stress that the above conditions (ou1–3) and (in 1–3) can be
summarized in the following way:

(BSD1) ∀a P %, ∃am P %B: a # am and if b P %B satisfies a # b,
then am # b.

(BSD2) ∀a P %, ∃an P %B: an # a and if g P %B satisfies g # a,
then g # an.

Conditions (BSD1) and (BSD2) are equivalent since the two approximation
maps are in duality by the Kleene complementation: ∀a P %, an 5 a8m8 and
am 5 a8n8. Borrowing some terminology from ref. 21, we can say that SBZ
algebras are always B-sharply dominating.

Example 3.1. In the SBZ algebra [0, 1]U of all fuzzy sets on the universe
U, for every fuzzy set f its necessity is the characteristic functional f n 5
xA1(f) of the certainly-yes domain A1( f ) :5 {x P U: f (x) 5 1} of f, and its
possibility is the characteristic functional f m 5 xA0(f)c of the set-theoretic
complement of the certainly-no domain of f. Note that A0( f )c 5 Ap( f ) :5
{x P U: f(x) Þ 0}, the latter being the possibility domain of f.

Therefore, the rough approximation of f can be identified with the ordered
pair of subsets of U: r( f ) [ (A1( f ), A0( f )c).

Example 3.2. In the SBZ algebra %(*) of all effect operators on a Hilbert
space *, for every effect operator F the associated necessity is the projector
F n 5 PM1(F) onto the certainly-yes subspace M1(F ) :5 {c P *: ^c.Fc& 5
|c|2} 5 ker (I 2 F ) of F, and the corresponding possibility is the projector
Fm 5 PM0(F)' onto the orthocomplement of the certainly-no subspace of F.

Therefore, in the Hilbertian SBZ algebra the rough approximation of
every effect operator F can be identified with the pair of subspaces of *:
r(F ) [ (M1(F ), M0(F )').
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4. QUANTUM AND CLASSICAL SBZ ALGEBRAS

In an SBZ effect algebra, besides the natural orthogonality relation “a '
b iff a % b exists” (which concides with the orthogonality relation induced
from the Kleene complementation: a 'K b iff a # b8, called K-orthogonality),
one can introduce another orthogonality relation induced from the Brouwer
complementation: a 'B b iff a # b,, called B-orthogonality. Trivially, a 'B

b implies a 'K b; moreover, a 'B b iff am 'K bm (the B-orthogonality of a,
b is just the K-orthogonality of their respective possibilities).

Definition 4.1. A quantum SBZ algebra is any SBZ algebra % satisfying
the following B-coherence law:

(B) For any triple a, b, c P % of pairwise B-orthogonal elements,
written {a, b, c} 'B , there exists the sum a % b % c P %.

The above B-coherence law involved the B-orthogonality relation, in
contrast to the Foulis–Bennett coherence law [17], which is a K-coherence
law since it can be expressed as:

(K) For any triple a, b, c P % of pairwise K-orthogonal elements,
written {a, b, c} 'K , there exists the sum a % b % c P %.

Let us recall Theorem 5.3 of ref. 17:

An effect algebra is an orthomodular poset iff it satisfies the K-coher-
ence law.

In contrast, if an SBZ effect algebra satisfies the B-coherence law, then
we cannot state that it is an orthomodular poset (see the case of the SBZ
algebra of effect operators on a Hilbert space discussed in Theorem 4.2 below,
which satisfies the B-coherence law, but whose induced Kleene poset is
not orthomodular).

The following result is given in ref. 4.

Theorem 4.1. Let % be an SBZ algebra satisfying the B-coherence law.
Then, the set %B of all B-sharp elements is an orthomodular orthoalgebra.

In the Hilbert space model one has the following further result.

Theorem 4.2. Let * be a Hilbert space and let %(*) be the SBZ algebra
of all effect operators on *. Then, the SBZ structure ^%(*), %, 8, ,, O, I&
is a quantum SBZ algebra.

Let us recall (see Theorem 2.2) that the induced structure ^%(*), #, 8,
,, O, I& is a BZ poset (which is not a lattice) whose sets of B-sharp and K-
sharp elements coincide with the orthomodular (atomic, complete) lattice
P(*) of all orthogonal projections (identified with the orthomodular lattice
of all subspaces of the Hilbert space *).
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Definition 4.2. A classical SBZ algebra is an SBZ algebra % satisfying
the B-coherence law and the following B-compatibilty law:

(C) For any pair of elements a, b P %, there exist a1, b1, c P % such
that b1 'B c, a1 'B (b1 % c), with a 5 a1 % c and b 5 b1 % c.

In the case of classical SBZ algebras the following result can be found
in ref. 4.

Theorem 4.3. Let % be a classical SBZ algebra. Then, the set %B of all
B-sharp elements is a Boolean algebra.

In the fuzzy set model one has the following further result.

Theorem 4.4. Let U be a universe space and let [0, 1]U be the SBZ
algebra of all fuzzy sets on U. Then the SBZ structure ^[0, 1]U, %, 8, ,, 0,
1& is a classical SBZ algebra.

Let us recall (see Theorem 2.1) that ^[0, 1]U, #, 8, ,, 0, 1& is a distributive
BZ complete lattice whose sets of B-sharp and K-sharp elements coincide
with the Boolean (atomic, complete) lattice {0, 1}U of all characteristic
functionals (identified as a Boolean lattice with the power set of the uni-
verse U ).

5. FINITE-DIMENSIONAL CHARACTERIZATION OF
HILBERTIAN SBZ ALGEBRAS

It is well known that, from the “sharp” point of view, the finite dimension-
ality of a Hilbert space * is characterized by the modularity of the orthocom-
plemented lattice of projectors.

In the BZ poset ^%, #, 8, ,, 0, 1& induced from an SBZ algebra, whereas
the Kleene complementation in general does not satisfy the noncontradiction
law [∀a P %, a ∧ a8 5 0] and the exclude-middle law [∀a P %, a ∨
a8 5 1], the Brouwer complementation does not satisfy the generalized de
Morgan law:

(dM) If a ∧ b exists in %, then a, ∨ b, exists in % and (a ∧ b), 5
a, ∨ b,.

Completing a partial result obtained in ref. 8, ref. 10 proves the follow-
ing result:

• From the “unsharp” point of view, a Hilbert space is finite dimensional
iff the SBZ algebra of effect operators satisfies the above (dM) law
for the Brouwer complement.

Furthermore, the following result is proved in ref. 11:
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• A von Neumann algebra with unit e is finite iff the SBZ algebra of
its effects [0, e] satisfies the above (dM) law for the corresponding
Brouwer complement.

6. EFFECT ALGEBRAS IN PRE-HILBERT SPACES AND SBZ
CHARACTERIZATION OF COMPLETENESS

Let us stress that in the context of effect algebras (without the Brouwer
negation), ^%, %, 8, 0, 1&, one of the possible models is the collection %(_) of
all effect operators on a pre-Hilbert space _ with respect to the orthogonality
relation (1), the partial sum operation (2), and the K-complementation (3),
defined formally as the corresponding points (1)–(3) of the Hilbert space
model discussed in Example 1.2 of Section 1.1. Thus, both the unsharp QM
of effect operators on a pre-Hilbert space and (a fortiori) the unsharp QM
of effect operators on a Hilbert space are models of the abstract effect algebra
structure. It will be very important to have at this abstract level some algebraic
condition which, applied to the pre-Hilbertian model, distinguishes Hilbertian
situations from the other ones.

Gudder [21] introduced the notion of sharply dominating effect algebra
(resp., de Morgan posets) in the following way.

Definition 6.1. An effect algebra % (resp., de Morgan poset 3) is said
to be sharply dominating iff it satisfies one (and then the other) of the
following two equivalent conditions:

(SD1) ∀a P %, ∃a* P %K (resp., ∃a* P 3K): a # a* and if b P %K

satisfies a # b, then a* # b.
(SD2) ∀a P %, ∃aa P %K (resp., ∃ao P 3K): ao # a and if g P %K

satisfies g # a, then g # ao.

Conditions (SD1) and (SD2) define a rough approximation space [5]:
^%, %K , *, o& based on % as the set of approximable elements, but, differently
from Section 3 [compare with (BSD1) and (BSD2)], whose set of sharp (or
crisp) elements is the collection of all K-sharp elements %K. These two
approximation maps are in duality by the Kleene complementation 8, i.e.,
ao 5 a8*8 and ao 5 a8o8. The main results of ref. 21 are the following:

Theorem 6.1. 1. If ^3, #, 8, 0, 1& is a sharply dominating de Morgan
poset, then there is a unique B-complementation , on 3 [∀a P 3: a, :5
a*8] such that ^3, #, 8, ,, 0, 1& is a BZ poset and 3B 5 3K. Conversely, if
^3, #, 8, ,, 0, 1& is a BZ-poset in which 3B 5 3K , then 3 is sharply
dominating and a* 5 a,8 for every a P 3.

2. If ^%, %, 8, 0, 1& is a sharply dominating effect algebra, then there
exists a unique B-complementation , on % [∀a P %: a, :5 a*8] such that
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^%, %, 8, ,, 0, 1& is an SBZ algebra and %B 5 %K. Conversely, if ^%, %, 8,
,, 0, 1& is an SBZ algebra in which %B 5 %K , then % is sharply dominating
and a* 5 a,8 for every a P %.

As to the the collection of all fuzzy sets on the universe U, we have
the following result.

Theorem 6.2. The SBZ algebra ^[0, 1]U, %, 8, ,, 0, 1& of all fuzzy sets
is such that

([0, 1]U)B 5 ([0, 1]U)K 5 {0, 1}U

and thus is sharply dominating and for every fuzzy set f P [0, 1]U, f * 5
xAp( f ), where Ap( f ) :5 {x P U: f (x) Þ 0} is the possibility domain of f.

Now, besides the wide number of well-known possible characterizations
of completeness in the class of all pre-Hilbert space structures [12, 6; and
Chapter 4 of 16], we can add the following one:

Theorem 6.3. A pre-Hilbert space is complete (i.e., a Hilbert space) iff
the effect algebra of all effect operators is sharply dominating.

In this case, according to the above results, there exists a unique B-
complementation such that the structure turns out to be an SBZ effect algebra
in which B-sharp elements coincide with K-sharp elements; the collection of
these sharp elements is just the orthomodular lattice of all projectors:

%B(*) 5 %K(*) 5 P(*)

For every effect operator F the B-complement is the projector F , 5 PKer(F).

Let us stress that if, making use of some mathematical properties of
effect operators, one needs to discriminate Hilbert spaces inside the class of
all pre-Hilbert spaces, then one possibility is to take into account the Brouwer
negation and the corresponding more articulate structure of SBZ algebra.

7. SBZ STRUCTURES IN AXIOMATIC UNSHARP QUANTUM
MECHANICS

In the previous sections we have shown that effect operators on a Hilbert
space can be naturally equipped with the structure of an SBZ algebra, produc-
ing in this way a concrete model of this algebra. Effect operators are already
considered as foundamental objects of the so-called unsharp quantum
mechanics based on Hilbert spaces. In this section we discuss an abstract
axiomatic approach to unsharp quantum physics as studied in ref. 9, of which
the standard Hilbert space realization is a concrete model.
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Definition 7.1. A preparation-effect-probability (PEFP) structure is a
triple (6, %, p) consisting of a nonempty set 6 of preparations, a nonempty
set % of effects, and a probability function p: 6 3 % ° [0, 1] satisfying the
following conditions:

Axiom 1. There exist an effect 1, called the certain effect, such that

∀w P 6, p(w, 1) 5 1

Axiom 2-%. (Indistinguishability principle of effects). Letting f1, f2 P %,
we have

∀w P 6, p(w, f1) 5 p(w, f2) implies f1 5 f2

Axiom 3. ∀f P %, ∃f 8 P % (the inverse of f ) such that

∀w P 6, p(w, f ) 1 p(w, f 8) 5 1

Axiom 4. For every orthopair of effects f, g P % [i.e., such that ∀w P
6, 0 # p(w, f ) 1 p(w, g) # 1], an effect, denoted by f % g and called the
sum of f and g, exists such that for every w P 6

p(w, f % g) 5 p(w,f ) 1 p(w, g)

The following is the interpretation of the primitive objects involved in
an SEFP structure:

(a1) Elements from 6 are interpreted as procedures, realized by macro-
scopic apparatus which prepare both individual samples and
ensembles of identical noninteracting physical objects under well-
defined and repeatable conditions.

(a2) Elements from % are interpreted as effects, tested by dichotomic
measuring macroscopic devices which, when interacting with a
single sample of the physical entity, produce a certain definite
macroscopic yes–no alternative. The occurrence of the alternative
is taken as the answer “yes” and its absence as the answer “no.”

(a3) For any pair (w, f ) P 6 3 %, the value p(w, f ) P [0, 1] represents
the probability of occurrence of the “yes” alternative for the effect
f when the physical entity is prepared in w.

Note that Axiom 4 is equivalent to the following:

Axiom 4d. For every ordered pair of effects f, g P % [i.e., such that
∀w P 6, p(w, f ) # p(w, g)], an effect, denoted by g * f and called the
difference of g and f, exists such that for every w P 6

p(w, f ) 1 p(w, g * f ) 5 p(w, g)

In particular, if Axiom 4 is true, then the difference operation of Axiom 4d
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is given by g * f 5 ( f % g8)8. If Axiom 4d is true, then the sum operation
of Axiom 4 is defined by f % g 5 (g8 * f )8.

The proof of the following result can be found in ref. 9:

Theorem 7.1. Let (6, %, p) be a PEFP structure (satisfying Axioms
1–4). Let us introduce $% :5 {( f, g) P % 3 %: ∀w P 6, p(w, f ) 1 p(w,
g) # 1} and the partial sum operation associating with every pair f, g P
$% the (unique) effect f % g assured by Axiom 4. Let us consider the map
8: % ° %, which is well defined owing to Axioms 3 and 2d.

Then the structure ^%, %, 8, 0, 1& (where 0 :5 18) is a regular effect
algebra such that

∃h P %: f % h 5 g iff ∀w P 6: p(w, f ) # p(w, h)

Example 7.1. The pre-Hilbert space model of PEFP structure. Let _ be
a pre-Hilbert space. Denote by %(_) the collection of all effect operators
(linear operators F: _ ° _ satisfying the condition ∀c P _, 0 # ^c.Fc&
# |c|2) and by P(%) # % the set of projection operators. Denote by 6(_)
the collection of all nonzero vectors from _. The triple (6(_), %(_), p),
where p: 6(_) 3 %(_) ° [0, 1] is defined, ∀c P 6(_) and ∀F P %(_), as

p(c, F ) :5
^c.Fc&

|c|2 (7.1)

is a model of a PEFP structure, i.e., a concrete mathematical structure in
which the set of preparations is realized by 6(_), the set of effects by %(_),
and the probability function by the above mapping (7.1), and such that all
Axioms 1, 2-%, 3, and 4 are satisfied.

As usual, also in this case we have to face the problem of characterizing
those pre-Hilbert PEFP structures that are based on a complete space. From
the abstract point of view, we can cite the following results.

Let (6, %, p) be an abstract PEFP structure. Then, for every effect f P
% we can define the certainly-yes and certainly-no domains as follows:

S1( f ) :5 {w P 6: p(x, f ) 5 1} and S0( f ) :5 {w P 6: p(x, f ) 5 0}

Definition 7.2. A PEFP structure (6, %, p) is called of type 6 iff the
following axiom holds:

Axiom S. For any effect f P %, another effect f n P % exists such that:
(a) S1( f n) 5 S1( f ).
(b) If g P % satisfies S1( fn) # S1(g), then f n # g.
(c) If h P % satisfies S0( fn) # S0(h), then h # f n.

The main result about type S PEFP structures is the following one [9]:
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Theorem 7.2. Let (6, %, p) be a PEFP of type 6. Then, the effect algebra
^%, %, 8, 0, 1& considered in Theorem 7.1 can be equipped with the unary
operation ,: % ° %, f → f , :5 f 8n, and the structure ^%, %, 8, ,, 0, 1& is
an SBZ effect algebra.

Moreover, for every effect a P % the following are equivalent:

1. It is B-sharp (a 5 a,,).
2. It is open (a 5 an).
3. It is S-sharp, i.e., satisfies the following conditions:
(SS1) It is K-sharp (a ∧ a8 5 0).
(SS2) If h P % satisfies S0(a) # S0(h), then h # a.

For every effect f P % the corresponding necessity of the inner approximation
map (r3) of Section 3 is just the effect f n whose existence is assured by the
above Axiom S.

According to the general theory of SBZ algebras, we can only assert
that the collection %B of all B-sharp effects is an FR orthoalgebra (recall
Proposition 2.2). We now explore a class of PEFP structures closely related
to quantum SBZ effect algebras, in the sense that the induced FR orthoalgebra
is orthomodular.

Definition 7.3. A PEFP structure (6, %, p) is said to be finitely complete
(FC-PEFP) iff the following axioms hold:

Axiom FC. For every effect f P %, an effect f n P % exists such that:
(a) S1( f n) 5 S1( f ).
(b) If g P % satisfies S1(g) 5 S1( f n), then f n # g.
(c) If h P % satisfies S0(h) 5 S0( f n), then h # f n.

Axiom 5. For every real number l P [0, 1] and every effect f P %,
there exists an effect, denoted by lf, such that for every w P 6, p(w, lf ) 5
lp(w, f ).

Putting together Axioms 4 and 5, one has that in any finitely complete
PEFP the set of all effects is closed with respect to the convex combination:
For every finite family of effects { f1, . . . , fn} # % and every corresponding
finite family of nonnegative real numbers {l', . . . , lh} # R1 such that
(n

j51 lj 5 1, an effect (n
j51 lj fj P % exists (the convex combination of the

fj with weights lj) such that

∀w P 6, p1w, o
n

j51
lj fj2 5 o

n

j51
lj p(w, fj) (7.2)

In the sequel, we denote by pfj the product effect, i.e., the equiweighted
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convex combination (∀j , lj 5 1/n). The product effect of two effects f and
g will be denoted also by f ? g.

For finitely complete PEFP structures it is possible to prove the following
results [9]:

Proposition 7.1. Every FC–PEFP structure is of type S with the same
necessity.

The FR orthoalgebra of all B-sharp effects induces a partial order struc-
ture of orthomodular lattice in which for every a, b P %B , a ∧ b 5 (a ? b)n

and a ∨ b 5 (a8 ? b8)8n, where a ∨ b # a % b.
The uniqueness of the orthogonal complement holds: For every a P

%B , there exists a unique a8 P %B such that a ' a8 and a ∨ a8 5 1.
Moreover, the set of preparations strongly determines the order of %B ,

in the sense that for every B-sharp effect a P %B and every effect f P %:

S1(a) # S1( f ) ⇒ a # f (7.3)

or, equivalently,

S0(a) # S0(g) ⇒ g # a (7.4)

The proof of this proposition as presented in ref. 9 (in particular for
proving the orthomodularity of the lattice of B-sharp effects) strongly uses
formal properties of the set 6 of preparations. It is an open problem whether
the SBZ algebra induced according to Theorem 7.1 from a FC-PEFP satisfies
the condition of B-coherence, i.e., is a quantum SBZ algebra.

Trivially, as an immediate consequence of (7.2), one has that for every
convex combination (and so for every product) of effects the following holds:

S11o
n

j51
lj fj2 5 ù

n

j51
S1( fj) and S01o

n

j51
lj fj2 5 ù

n

j51
S0( fj) (7.5)

As a natural extension of this property (which in particular holds for every
finite product of effects) we can introduce the following further definition.

Definition 7.4. A finitely complete PEFP structure is called complete
(C-PEFP) iff the following further axiom holds:

Axiom JPc. For every set & of effects, an effect p& f exists (the product
of &) such that

S1(p& f ) 5 ù
fP&

S1 ( f ) and S0(p& f ) 5 ù
fP&

S0( f )

With respect to this definition, the following result is given in ref. 9.
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Proposition 7.2. The orthoposet structure ^%B , #, 8, 0, 1& of all B-sharp
effects of a C-PEFP is an orthomodular complete lattice in which for every
family &B # %B of B-sharp effects,

`
aP&B

a 5 (p&Ba)n and ~
aP&B

a 5 (p&Ba8)8n

Now it is possible to show that the PEFP structures of Example 7.1 are
models of C-PEFP if based on Hilbert spaces, rather than (incomplete) pre-
Hilbert ones.

Theorem 7.3. In the PEFP structure ^6(*), ^(*), p& based on a Hilbert
space * [where p is the probability function defined by (7.1)] the follow-
ing hold:

(H1) Let F P ^(*) be an effect operator. Then the orthognal projection
Pker(I-F) satisfies conditions (a), (b), and (c) of Axiom FC, Defini-
tion 7.3.

(H2) For every l P [0, 1] and every effect operator F P ^(*) the
operator l ? F is an effect such that ∀c P 6(*), ^c.(lF )c& 5
l^c.Fc&, i.e., Axiom 5 of Definition 7.3 is satisfied.

(H3) For every family & of effect operators, with the defined subspaces

M1(&) :5 ù
FP&

M1(F ) and M0(&) :5 ù
FP&

M0(F )

the effect operator

P&F :5 1–2 (EM1(&) 1 (EM0(&)8)

is such that

M1(P&F ) 5 ù
FP&

M1(F ) and M0(P&F ) 5 ù
FP&

M0(F )

i.e., Axiom JPc is also satisfied.

Therefore, the Hilbert space PEFP structures are complete. It is a second
open problem of this investigation whether the Axioms FC, 5, and JPc
characterize Hilbert space PEFP with respect to the pre-Hilbert case.

7.1 The Unsharp SBZ Version of the Photon Localization Problem

Reformulating in the quantum-logic environment a no-go theorem about
localization of zero mass and nonzero spin particles proved by Newton and
Wigner [25], Wightman [27] showed that if the notion of localizability on a
Hilbert space * involves a PV-measure describing whether the system is
contained within a certain region in the space and unitary representation of
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the Euclidean roto-translations expressing the homogeneity and isotropy of
the space by a standard covariance condition, then the imprimitivity theorem
tell us “that particles of restmass zero with spin Þ 0 belonging to an irreducible
representation of the Lorentz group do not admit position operator” [22].

An attempted solution of this problem has been proposed in refs. 22
and 1 using POV-measures F: @(R) ° %(*) to describe photon localization
(see also ref. 23). Since in the Jauch–Piron approach properties must be
described by projectors, they define a notion of generalized localizability
which is an inner PV-measure obtained, as proved in ref. 13 (see also ref.
24 for a partial result), just making the condition (F(D))n 5 (F(D))8, 5
P12ker(F(D)) of any unsharp localization effect. Let us note that for any state
described by a density operator W, the mapping associated with any real
Borel set D, the quantity Tr[W F(D)n] P [0, 1] is an inner (classical) probability
measure. So, in order to formalize JP generalized localizability in the Hilbert
space context, one needs a Brouwer negation.

This result can be generalized to any SBZ effect algebra once the standard
notion of effect algebra observable is introduced; indeed, it is possible to
prove that the inner approximation of any such observable gives rise to an
inner sharp observable.
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